
Advances in Computer Science and Information Technology (ACSIT)
Print ISSN: 2393-9907; Online ISSN: 2393-9915; Volume 2, Number 2; January-March, 2015 pp. 107-111
© Krishi Sanskriti Publications
http://www.krishisanskriti.org/acsit.html

OpenFlow Software Defined Networking
Controllers: A Comparative Study

Avantika Kondel and Anita Ganpati2
1Research Scholar, Department of Computer Sciences Himachal Pradesh University

2Department of Computer Sciences Himachal Pradesh University
E-mail: 1avantika.er91@gmail.com, 2anitaganpati@gmail.com

Abstract—The concept of programmable networks has recently
gained impetus due to the emergence of Software Defined
Networking (SDN) paradigm. SDN architecture separates the
network control and forwarding functions allowing the network
control to become directly programmable and the underlying
infrastructure to be abstracted for applications and the network
services. OpenFLow protocol is foundational element for building
SDN solution. OpenFlow controller is an application that manages
flow control in SDN. This paper presents an extensive study of SDN’s
open flow controller based on the literature survey and comparison
among them. Analysis of these controllers helps to find the most
optimal one for future work.

1. INTRODUCTION
Modern data centers require a network with high cross-section
bandwidth, latency, fine-grained security, support for
virtualization and simple management that can scale to
hundreds of thousands of ports at low cost. Although ethernet
is most commonly deployed layer2 (L2) datacenter network,
traditional switched ethernet cannot specify these
requirements at a large scale. SDN is one promising class of
network architecture that is suitable substitutes for traditional
switched ethernet. The emergence of SDN [1] has sparked
significant interest in rethinking classical approaches to
network architecture and design. The SDN [3] [4] is a concept
that is to break with the traditional networks where the switch
decides the actions to do. The SDN concept was introduced by
Nick McKeown [5], a professor at Stanford University and is
based on defining a model where all switches move the
capacity of decision to a central element, to a controller. The
SDN concept is closely related to Network as a Service
(NaaS).

SDN makes it possible to control an entire network in
software, by writing programs that control network behavior
to suit specific applications and environments. SDN gives
network designers freedom to refactor the network control
plane [2]. All SDN architectures as shown in Fig. 1 have three
layers: the infrastructure layer, the control layer and the
application layer. The three layers of SDN are connected by
two interfaces. The SDN protocol is the switch firmware, and

there is a proprietary interface between the hardware and
software inside the switch.

Fig. 1: Three layer Architecture of SDN with OpenFlow.

An OpenFlow controller is an application that manages flow
control in an SDN environment. Most current SDN controllers
are based on open flow protocol. However, to be able to
realize the SDN concept, one must choose a suitable
controller. This decision problem can be troublesome as it is
difficult to define the right metrics, and the number of
controllers keeps increasing. To solve this issue, researcher
surveyed literatures, websites, talks, blogs, and any available
resources providing information about the existing SDN
controllers.

Among them, three controllers have been selected for the
survey to gather their properties. These controllers are: NOX
[6], Beacon [7] and Floodlight [8].

2. LITERATURE REVIEW

Thomas D. Nadeau et al. [9] described SDN as “an
architectural approach that optimizes and simplifies network
operations by more closely binding the interaction among
applications and network services and devices, whether they

Avantika Konde and Anita Ganpati

Advances in Computer Science and Information Technology (ACSIT)
Print ISSN: 2393-9907; Online ISSN: 2393-9915; Volume 2, Number 2; January-March, 2015

108

are real or virtualized”. Mendonca et al. [10] stated that SDN
has been proposed as a way to programmatically control
networks, making it easier to deploy new applications and
services, as well as tune network policy and performance. The
key idea behind SDN is to decouple the data from the control
plane by: (1) removing control decisions from the forwarding
hardware, (2) allowing the forwarding hardware to be
“programmable” via an open interface, and (3) having a
separate entity called “controller” defined by software the
behavior of the network formed by the forwarding
infrastructure, thereby creating a “software defined network”.

In SDN, the controller is the entity that dictates the network
behavior, on this Natasha Gude et al. [6] stated that the logical
centralization of the control logic in a software module that
runs in a standard server the network operating system offers
several benefits. OpenFlow technology moves the control
logic to an external controller (typically an external PC) and
this controller is responsible for deciding the actions that the
switch must perform. This communication between the
controller and the data path is made, on the network itself,
using the protocol that provides OpenFlow (OpenFlow
Protocol).

Chris Tracy [11] mentioned that “OpenFlow is a new
technology based on the concept SDN.” OpenFlow has been
used to implement a wide variety of network tools and
protocols, including routing circuit-switch and packet
switched traffic over the same switch [12], wave-length path
control in optical networks [13], in-network load balancer
[14], wireless sensor networks [15], and wireless mesh
networks [16].

Marcelo D. D. Moreira et al. [17] concluded that “OpenFlow
network virtualization model follows the shared data plane
approach by defining a centralized element that controls and
programs the forwarding table in each network element”.

NOX is a multi-threaded C++-based controller written on top
of Boost library. Hardeep et al. [18] defined NOX as “an
external controller that is responsible for adding or removing
new routing rules into the OpenFlow switch’s flow table”. The
NOX controller decides how packets of a new flow should be
handled by the switch. When new flows arrive at the switch,
the packet gets redirected to the NOX controller which then
decides whether the switch should drop the packet or forward
it to a machine connected to the switch. The NOX controller
can also delete or modify existing flow entries in the switch.

Beacon [19] is a multi-threaded Java-based controller that
relies on OSGi and spring frameworks. Beacon explores new
areas of the OpenFlow controller design space, with a focus on
being developer friendly, high performance, and having the
ability to start and stop existing and new applications at
runtime.

Floodlight [20] is a multi-threaded Java-based controller that
uses Netty framework. Floodlight is designed to work with the
growing number of switches, routers, virtual switches, and
access points that support the OpenFlow standard.

3. OPENFLOW CONTROLLERS

In a data center or cloud where virtual machines move swiftly
from server to server, networks must respond rapidly to traffic
changes. But traditional switch and router path determination
algorithms react slowly. SDN aims to reduce network reaction
time to traffic changes by moving path allocation from
individual devices to centralized controller software that lives
on a workstation or server. The controller component
communicates with each device in the network, receiving
updates on load and link status and then managing the traffic
flows among the devices. When a data source begins
communication with a destination across the network, the
controller determines an optimal path through the network
based on existing load and network status. The controller then
creates a flow defined by source and destination addresses and
communicates with each device along the path, informing
them of the new flow and how to handle packets in the flow.

3.1 NOX

NOX is the original openflow controller. It serves as a network
control platform that provides a high-level programmatic
interface for management and development of network control
applications. Its system-wide abstractions turn networking into
software platform.

The NOX core as shown in the Fig. 2 provides helper methods
such as network packet process, threading and event engine in
addition to OpenFlow API’s for interacting with OpenFlow
switches and input-output support. With the current NOX
there are two core applications: OpenFlow and switch and
both network and web applications are missing. Dynamic
shared object deployer (DSO) scans the directory structure for
any components being implemented as DSO’s.

Fig. 2: NOX Architecture [6]

OpenFlow Software Defined Networking Controllers: A Comparative Study 109

Advances in Computer Science and Information Technology (ACSIT)
Print ISSN: 2393-9907; Online ISSN: 2393-9915; Volume 2, Number 2; January-March, 2015

The NOX has an event dispatcher which works on the event
system as explained below.

Event system is another important concept of the NOX
controller. An event represents a low level or high level event
in the network. The event only provides the information, and
processing of that information is deferred to handlers. Many
events roughly correlate to something which happens on the
network that may be of interest to a NOX component. These
components consist of a set of event handlers. Events drive all
execution in NOX.

The drawback of NOX is that it is single threaded and is
neither actively developed nor has an active community.

3.2 Beacon

Beacon is a JAVA based open source OpenFlow controller
created in 2010. It is a fast, cross-platform, modular controller
that supports both event-based and multithreaded operations.

The key features of Beacon are it has been use in many
research projects, networking classes and trial deployment. It
powers a 100-vswitch experimental data center and has run for
months without downtime. It runs on many platforms, from
high end multi-core Linux servers to android phones. Beacon
is licensed under a combination of the GPL v2.licenseand the
Stanford University FOSS License Exception. Code bundles
in Beacon can be started/stopped/refreshed/installed at
runtime. It is fast due to multithreaded operation.

Fig. 3: Architecture of Beacon [7]

The core applications of the Beacon as shown in Fig. 3
includes the decisions to be made on the topology of the
network, a device manager which manages the devices in the
network including the slices for different networks and the
routing of the traffic in the network by analyzing the source
and the destination addresses. Apart from these applications
which are at the core of the Beacon architecture, it also

provides us with the facility to create and run our own
applications.

Beacon [17] explores new areas of the OpenFlow controller
design space, with a focus on being developer friendly, high
performance, and having the ability to start and stop existing
and new applications at runtime.

3.3 Floodlight

Floodlight is an OpenFlow controller built on work that has
begun at Stanford University and UC at Berkeley and now
continues among a community of open source developers
along with engineers at SDN and network virtualization
startup Big Switch Networks INC. The overview of Floodlight
is shown in Fig. 4. It works with physical and virtual switches
that speak the OpenFlow Protocol. Apache-licensing lets
floodlight to be used for almost any purpose. It is a core of
commercial product from Big Switch Networks and is actively
tested and improved by a community of professional
developers.

While the controller is a key component in SDN, it provides
only the means to manage or direct the network that lies
beneath.

Fig. 4: Architecture of Floodlight [20]

Avantika Konde and Anita Ganpati

Advances in Computer Science and Information Technology (ACSIT)
Print ISSN: 2393-9907; Online ISSN: 2393-9915; Volume 2, Number 2; January-March, 2015

110

As shown in the Fig. 4 in the control plane of the SDN
Floodlight acts as a controller for various applications
described below. With Floodlight handling applications it
becomes very convenient for the network designers because
many of the issues such as routing, controlling flow and
security issues are handled by the Floodlight itself making it
very viable and multipurpose controller.

Floodlight Applications [20]:

1. Virtual Networking Filter- It identifies the packets that
enter the network but do not match an existing flow.

2. Circuit Pusher- It creates a flow and provisions switches
along the path to the packet’s destination.

3. Static Flow Pusher- It is used to create a flow in advance
of the initial packet in the flow entering the network.

4. Firewall modules- It gives the same protection to devices
on the SDN as traditional firewalls on a physical network.

Floodlight has unquestionably the most active and responsive
community among the F/OSS OpenFlow software. A majority
of the floodlight developers working in big switch networks
directly participate in the mailing-lists. It was truly a
supportive and active community. Floodlight exposes almost
all of its functionality through a REST API. One of its kinds,
floodlight can also be run as network backend for OpenStack
using a Quantum plug-in. Finally, it is the most documented
controller project in the ecosystem.

4. OBJECTIVE OF THE STUDY

The objective of the study was to extensively review the
openflow controllers and find out the most viable one. Before
solving the SDN challenges it is very important to have an in
depth knowledge of its components. After studying from
various sources of information available an analysis of the
three controllers is presented.

5. ANALYSIS

 After studying all the three controllers in detail with all the
information available whether in the form of research paper or
from the internet all the features which are necessary to be in
the OpenFlow controller while deployment of SDN are
tabulated in the table below. Following is the feature matrix in
Table 1

Table 1: Feature matrix for the three controllers.
NOX Beacon Floodlight

Is actively developed? ˟
Has an active community? ˟
Easy to install? ˟
Easy to program? ˟
Documented? ˟
Provides REST API? ˟
Have utility functions? ˟

Has a UI? Python Web Web
Supports hosts with multiple
attachment points?

˟ ˟

Topologies with loops? ˟ ˟
Supports OpenStack
Quantum?

˟ ˟

Virtual Networking Filter? ˟ ˟
Circuit Pusher? ˟ ˟
Firewall modules? ˟ ˟

When working on an upcoming technology like SDN it is
important that the environment which contains many
components such as the controllers is actively developed and
maintained according to the present scenario. Floodlight has
been actively worked upon and is also actively developed.
With the support from the Floodlight community it becomes
easy for the researchers to provide some solution to the
challenges which would be faced in the coming time when
SDN would be deployed on a large scale. One such challenge
is scalability which involves the controllers to be handling the
flow and all the issues related to the control plane. NOX and
Beacon are neither actively developed nor they have been
documented. With the increase in the data centers the network
may be much more complex than the one we are facing now.
So it becomes tremendously important that the controller
handles even the utmost complicated network with same
performance and fault tolerance. NOX and Beacon don’t
support topologies with loops but Floodlight does.
Considering all the parameters and the architectures of the
three controllers it was found that Floodlight turned out to be
the best in terms of control performance and with respect to
future work which can be done to enhance Floodlight.

6. CONCLUSION AND FUTURE WORK

Clearly it can be seen from the Table 1 that Floodlight is found
to be the most viable controller in the ecosystem as of now.
Since it takes a huge amount of time in learning a controller,
keeping in mind the analysis of the controllers presented
above the development of SDN environment using Floodlight
can be begun after it being realized as an optimal openflow
controller. The future work includes dealing with the
scalability challenge in SDN using Floodlight as a controller
for various network slices to be created to scale SDN for huge
networks. Supporting a large number of tenants with different
abstractions raises scalability challenges. For example,
supporting virtual topologies requires a way for tenants to run
their own control logic and learn about relevant topology
changes. Software Defined Networking (SDN) is an appealing
platform for network virtualization, since each tenant’s control
logic can run on a controller rather than the physical switches.
In SDN, a logically centralized controller manages the
collection of switches through a standard interface, enabling
the software to control switches from a variety of vendors.

OpenFlow Software Defined Networking Controllers: A Comparative Study 111

Advances in Computer Science and Information Technology (ACSIT)
Print ISSN: 2393-9907; Online ISSN: 2393-9915; Volume 2, Number 2; January-March, 2015

REFERENCES

[1] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J.
Rexford, S. Shenker, and J. Turner. OpenFlow: enabling innovation in
campus networks. ACM Sigcomm CCR, 38(2), 2008.

[2] Dan Levin, Andreas Wundsam, Brandon Heller Nikhil Handigol and
Anja Feldmann .Logically Centralized? State Distribution Trade-offs in
Software Defined Networks. ACM, 2012.

[3] How the emergence of OpenFlow and Software-Defined Networking
(SDN) will change the networking landscape. Brocade. 2012

[4] Software-defined Networking: The New Norm for Networks. Open
Networking Foundation. April 13, 2012

[5] Nick McKeown Available at: http://yuba.stanford.edu/[Online] accessed
on December 20, 2014

[6] N. Gude, T. Koponen, J. Pettit, B. Pfaff, M. Casado, N. McKeown, and
S. Shenker. NOX: towards an operating system for networks.
SIGCOMM CCR, 38(3), 2008.

[7] David Erickson in The Beacon OpenFlow Controller. ACM, 2013.

[8] FloodlightAvailable:http://www.projectfloodlight.org/floodlight/.
[Online], accessed on 20-Dec-2014

[9] Thomas D. Nadeau, Ken Gray, SDN: Software Defined Networks,
O’Reily Publications, 2013.

[10] Marc Mendonca, Bruno Astuto A. Nunesy, Katia Obraczka and Thierry
Turlettiy in Software Defined Networking for Heterogeneous Networks
University of California, Santa Cruz, USA. IEEE. 2012

[11] Chris Tracy, Introduction to OpenFlow: Bringing Experimental
Protocols to a Network Near You, NANOG50 Conference, 2010.

[12] S. Das, G Parulkar, N McKeown, P Singh, D Getachew, Long in Optical
Fiber Communication (OFC), collocated National Fiber Optic
Engineers Conference, 2010 Conference on (OFC/NFOEC), IEEE,
2010.

[13] L. Liu Tsuritani, T. Morita, I Hongxiang Guo, Jian Wu Openow-based
wavelength path control in transparent optical networks: a proof-of-
concept demonstration. In Optical Communication (ECOC), 2011 37th
European Conference and Exhibition IEEE, 2011.

[14] R. Wang, Dana Butnariu, and Jennifer Rexford Openow-based server
load balancing gone wild. In Proceedings of the 11th USENIX
conference on hot topics in management of internet, cloud, and
enterprise networks and services USENIX Association, 2011.

[15] A. Mahmud, Rahmani R. Exploitation of Openow in wireless sensor
networks. In Computer Science and Network Technology (ICCSNT),
2011 International Conference IEEE, 2011.

[16] P. Dely, Kassler A, Bayer N in Computer Communications and
Networks (ICCCN), 2011 Proceedings of 20th International Conference
IEEE, 2011.

[17] Marcelo D. D. Moreira, Natalia C. Fernandes, Hugo E. T. Carvalho,
Lyno Henrique G. Ferraz, Rodrigo S. Couto, Igor M. Moraes, Miguel
Elias M. Campista, Lus Henrique M. K. Costa, Otto Carlos M. B. Duarte
in Packet Forwarding Using OpenFlow, IEEE.

[18] Hardeep Uppal and Dane Brandon in OpenFlow Based Load Balancing,
University of Washington, 2010.

[19] D.Erickson.Beacon.
https://openflow.stanford.edu/display/Beacon/Home,2012. [Online],
accessed on 23-Dec-2014.

[20] Floodlight. http://Floodlight.openflowhub.org [Online], accessed on 23-
Dec-2014.

